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Creeping flow in two-dimensional channels 
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Research Laboratories, Eastman Kodak Company, Rochester, NY 14650, USA 

(Received 25 September 1986) 

Creeping flow in two-dimensional periodic channels of arbitrary geometry is con- 
sidered. The problem is formulated using the boundary-integral method for Stokes 
flow, presently adapted for periodic flows with special geometrical characteristics. 
Numerical calculations for steady flow in channels constricted by a plane and a 
sinusoidal wall are performed. Detailed streamline patterns are presented and criteria 
for flow reversal are established. It is shown that for narrow channels the mechanism 
driving the flow has a strong effect on the structure of the flow. The results are 
discussed with reference to lubrication, coating and molecular-convective processes. 

1. Introduction 
Flow in channels is encountered in diverse areas of fluid mechanics. The literature 

contains a large number of studies for a variety of flow conditions, corresponding to 
different physical situations . 

Steady flows between two flexible or solid bodies in relative motion are often 
studied with reference to lubrication or coating processes (Langlois 1964). The two 
bodies are kept separated by strong pressure forces generated by the flow. In these 
processes it is of interest to determine how irregularities of the body surfaces affect 
the ratio of the friction force to weight of the bodies, and the flow rate. Pressure-driven 
flow in narrow channels with sudden expansions is important in the extrusion and 
coating of thin liquid films. The expansions dampen three-dimensional fluid motions 
causing product non-uniformities. In  these applications it is important to design the 
channels to avoid low wall shear stress and onset of recirculating fluid regions. These 
may lead to particle or bubble entrapment, increased residence times, and build-up 
of chemical reactants. The above two examples demonstrate the importance of flows 
in corrugated channels for specific industrial processes. From a fundamental 
standpoint, these flows provide useful information for flows in complex media such 
as packed bed reactors and porous rocks. The analysis provides relationships for the 
flow properties as functions of the macroscopic material characteristics (Taylor 1971 ; 
Deiber & Schowalter 1979). 

Unsteady flows are also studied with reference to various physical systems. In  a 
simple class of flows, the motion is due to the steady propagation of waves along 
the flexible walls of a channel. Examples in this class include the locomotion of 
microscopic organisms, peristaltic pumping of sensitive or corrosive fluids, physio- 
1ogicFl flows in the human body (Pozrikidis 1987), and the generation of water waves 
by wind (Caponi et al. 1982). A second class of flows includes oscillatory flows over 
wavy surfaces. Onset of steady streaming motion, and periodic formation and 
expansion of eddies are two interesting phenomena aasociated with these flows (Hall 
1974; Sobey 1983). 
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Apart from their importance in various natural and industrial systems, flows in 
corrugated channels are of pure fundamental interest ; they constitute convenient 
prototypes for studying the mechanisms of viscous flow under different flow 
conditions. Similar systems consisting of walls with cavities, two intersecting planes, 
two cylinders, and a plane and a cylinder have been employed by previous authors 
(Hasimoto & Sano 1980). As an example, Jeffrey & Sherwood (1980) studied shear 
flow over a stationary cylinder tangent to a moving wall and established criteria for 
eddy formation at  the points of contact. 

We saw that there is a wide variety of applications involving flow in corrugated 
channels. To study different flow conditions, various methods have been employed. 
A common approach is to assume small wall corrugations, small channel widths, and 
very small or very large Reynolds numbers, and to write perturbation expansions 
in these variables. To consider the more realistic cases of finite amplitudes, numerical 
methods have been employed. These include finite difference, finite element, and 
spectral solutions, usually at intermediate and low Reynolds numbers. As expected, 
these methods are most effective for relatively simple flow geometries. The goal of 
the present article is to provide a detailed numerical investigation of flow in 
two-dimensional channels, in the limit of creeping motion. Emphasis will be placed 
on the fundamental description of the flow as well as on the application of the results 
to specific engineering processes. 

The analysis is based on the boundary integral method for two-dimensional Stokes 
flow, presently extended to two-dimensional periodic flows with special geometrical 
features. The basic strength of the method is the simplicity of the required numerical 
procedure, allowing an accurate, detailed, and extended investigation. 

In $52 and 3 we present the mathematical formulation and develop the numerical 
procedure. In $4 we discuss shear and pressure driven flow in periodic channels 
constricted by a plane and a sinusoidal wall. 

2. Mathematical formulation 
We consider slow motion of a Newtonian fluid in a two-dimensional domain which 

may be bounded by a number of fluid, solid, and free surfaces or may extend to 
infinity. At low Reynolds numbers the flow is governed by the Stokes equation and 
the continuity equation 

(1) 
aa 2 = 0, 
ax, 

respectively, where ui, is the stress tensor, u!, = - 8 ,  P+p(au,/ax,++au,/ax,). These 
equations constitute a system of linear, elliptic, partial differential equations, whose 
solution may be conveniently expressed as an integral over the flow boundary 
(Higdon 1985). The result for points on the flow boundary is 

For points in the interior of the flow, the factor 2np in the denominator should be 
replaced by 4np. In the above equation, f i  = u t k y k  is the boundary force, and rk is 
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the unit vector normal to the boundary pointing into the fluid. When the flow extends 
to infinity, the boundary is assumed to include a circle or part of a circle of infinite 
radius. In this case, care must be taken for the convergence of the integral. 

The tensor S,, represents a singular fundamental solution to Stokes equation with 
a logarithmic singularity. The velocity, pressure, and stress field associated with this 
solution may be written in the form 

I 1 
P(x’) = --p,(x, x’) a,, 

41cIu (4) 

where qjlC - l/lx’ - xl as Ix’ -XI -+ 0, and a, is an arbitrary constant. qjk is the stress 
tensor corresponding to S,,, defined as q,k = -atk q+p(W,,/az;+ W,/az;). Using 
the divergence theorem, one may write (3) in an alternative form, 

where a/an denotes differentiation normal to the boundary in the direction of the 
fluid (Happel & Brenner 1965, p. 81). Equation (3) is a singular Fredholm equation 
of the first kind for the boundary force, and of the second kind for the boundary 
velocity. Appropriate forms of this equation for interior or exterior flows are given by 
Higdon (1985) and by Lee & Leal (1986). 

The choice of the fundamental solution Sg, is important for the efficient imple- 
mentation of the solution scheme. Therefore, we would like to discum it in some detail. 

The simplest choice is the two-dimensional Stokeslet 

I i? 
Pf’T(9) = -2p$ 

where 5 = x’-x, and r = 121 (Ladyzhenskaya 1969, p. 67). In  this cme, (4) and (6) 
yield the flow at the point x’, associated with a point force of strength la1 located at x, 
pointing in the - a-direction. 

Other fundamental solutions may be employed to exploit specific geometrical 
features. Blake (1971) proposed a fundamental solution which preserves zero velocity 
along a plane, placed at y = w. This may be derived from Lorentz formula (see Happel 
& Brenner 1965, p. 87), and is composed of a Stokeslet and a collection of image 
Stokeslets, Stokes-Doublets, and potential source-Doublets 

syx, x’) = SST(R)-SST(2)-2(y-w) D(3)-2(y-w)SP(S) ,  (7) 
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where R = ( 2 , g )  = (2'-x, yf +y-2w), and values of the indices 1 and 2 indicate the 
x- and y-direction respectively. The matrices D and P are defined as 

2# 22 -_ lnp-- 

lnp-- -- 
P2 P2 

> 

with p = 121. This fundamental solution is useful in problems involving the motion of 
bodies near a plane wall. 

For a flow that is symmetric with respect to a plane a t  y = w, it is useful to introduce 
a fundamental solution that yields zero velocity normal to this plane at yf  = w, 

(9) 

where again i,j = 1,2 indicate the x- and y-direction respectively. This solution is 
schematically illustrated in figure 1 (a). Similarly, for a flow which is symmetric with 
respect to a point, we introduce the solution Ssp, illustrated in figure 1 (b). 

For flows that are periodic in the x-direction, it is convenient to introduce a periodic 
fundamental solution representing an array of point forces along the x-axis. The 
velocity and stress tensors may be expressed in closed form by summing (5 )  

qjw = @?($) + (-  l)'+'@?(W), 

-k$A, 

A+k$A,-l  
A-k$A, - kgAz 1 ' 

PfTP(2) = - 2pA,,, 

T::: = 2p div (A, k$Az), 

c:: = 2p div ( -  k#Az, A ) ,  

T:.: = 2p div (A, - k$A,J, 

q.: = 2p div (k@A,, A ) ,  
TSTP = TSTP = TSTP 

Uk kU j k f  

with (11) 

where A is the separation between the point forces, k = 2x/A is the wavenumber, and 
A,, A,, indicate derivatives of A with respect to k9 and k$ respectively. One may 
readily verify that as la(+O, this solution behaves like a Stokeslet. Similarly, for 
semi-inhite periodic flows that are bounded by a plane wall or are symmetric with 
respect to a plane or a point, we introduce the periodic versions of Sw, Ssw, and SP, 
denoted as Swp, Sswp, and Sspp respectively. These may be expressed in closed form 
by direct summation. 

The simplification owing to the use of the appropriate fundamental solution may 

A = 4 In [ ~ ( c o s ~  (k$) - cos (k$) ) ] ,  
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FIGURE 1 .  Fundamental solution of Stokes equation for a flow symmetric with respect (a)  to a plane 

and ( b )  to a point; the vectors represent Stokeslets. 

I h -  I- 

k-A-1 

FIQURE 2. Periodic flow in two-dimensional channels; (a) flow constricted by a plane and a 
corrugated wall, (b )  flow constricted by two walls that are symmetric with respect to the point A ; 
w is the channel width and a is the amplitude of the corrugations. 

be illustrated by considering flow in the channels shown in figure 2. In the first case 
(figure 2a) we use the fundamental solution Swp and integrate (3) along the indicated 
contour enclosing one fluid period. For zero net pressure drop, the integrals along the 
two vertical segments cancel, whereaa the integral along the plane wall is equal to 
twice the velocity of this wall. Similarly for flow in the channel shown in figure 2 (b), 
we use the solution Sspp, and integrate (3) along the indicated contour. Again, for 
zero net pressure drop, the contribution from the straight segments vanishes. Thus, 
in both cases, the velocity is expressed simply as an integral over one period of the 
wavy wall. Use of the appropriate fundamental solution for the corresponding flow 
geometry will be implicit throughout the following discussion. 
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3. Numerical procedure 
In this section we develop a numerical method for solving (3) for the boundary force 

ft(x’) given the boundary velocity ut(x’),  with particular reference to the channel flows 
depicted in figure 2. It is important to note that the boundary velocity may be 
specified either as a total or as a disturbance quantity. When the flow is driven by 
the motion of the boundaries, it is convenient to consider the total velocity; when 
it is driven by an imposed mean pressure gradient or by the presence of body forces, 
it is convenient to consider the disturbance flow owing to the boundary deviation 
from a known reference state. 

Our numerical procedure employs a collocation method, similar to that suggested 
by Higdon (1985). First, we identify a set of N +  1 points along one period of the 
appropriate channel boundary (figure 2). The boundary shape is approximated as a 
polygonal line composed of N straight segments connecting these points. The 
boundary velocity is approximated as a linear function, whereas the boundary force 
is approximated as a constant function fr, over the nth segment. Next, we apply (3) 
at the middle of each segment xm, to obtain the following system of linear algebraic 
equations for f:, 

N N 

n-1 n-1 
uj(xm)+ Z B?(x,) = 2 AG(xm).fr, (12) 

where 
i r  

Sn denotes integration over the nth segment. The singular integrals in (13) may be 
evaluated numerically by subtracting and adding the Stokeslet, 

r r r 
J S,ds = (St,-@T)ds+ @Tds, J J 

n n # I 
J qjk ut nk ds = ( q j k -  T:;) ut nk ds + l’:; ut nk ds. J J J 

The second integrals in the right-hand side of (14), associated with the Stokeslet, are 
evaluated analytically over each segment. Finally, the linear algebraic system (12) 
is solved using standard Gauss elimination. 

The efficiency of the above method was tested by solving for simple shear flow in 
infinite fluid, considering as a control volume the channel shown in figure 2(a) for 
different cell widths w/A and wave amplitudes a /h;  for this flow, the method yields 
the exact solution. Indeed, our results were accurate up to the fifteenth decimal place, 
limited by the computer round-off error. 

Higdon (1985) showed that the relative error in the above approximation is of order 
S2, where S is the segment length. Specifically, the relative error in evaluating the 
integrals in (12), associated with the polygonal boundary approximation, is of order 
S2kZ, where k is the local boundary curvature of order one for smooth boundaries. 
Further, the relative error owing to the linear approximation of the boundary 
velocities and the stepwise approximation of the boundary forces is of order S2. This 
yields a consistent, order 62 total relative error. 

Knowing the behaviour of the relative error is beneficial in obtaining high-accuracy 
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results while using a moderate number of points. We use successive Romberg 
extrapolation from primary runs with n = 20,40,80, and occasionally 160, to increase 
the accuracy up to SB. The observed fast convergence confirms the error analysis and 
validates our procedure. 

4. Results and discussion 
We consider steady flow in a periodic channel constricted by a plane wall at y = w, 

and a sinusoidal wall at y = --a cos (kz). This flow may be driven by two independent 
mechanisms: the steady, horizontal translation of the plane wall, and the presence 
of a mean pressure gradient 0 = - dP/dx. In  the trivial case of zero wave amplitude, 
these reduce to plane Couette and plane Poiseuille flow, respectively. The two cases 
will be considered independently with a linear superposition possible owing to the 
linearity of Stokes equation. To clarify the computational procedure, we note that 
in the shear-driven case we calculate the total flow, whereas in the pressure-driven 
case we calculate the disturbance flow owing to the amplitude of the wavy wall. 

4.1. ' Shear-driven flow ' 
First, we consider flow in narrow channels, taking as a typical example the case 
w/A = 0.100. Figure 3 (a) illustrates the changes in the streamline pattern as the wave 
amplitude a/A is increased from 0.025 to 0.090. When a /A  = 0.025, the streamlines 
are smooth, adjusting to the curvature of the wavy wall. Doubling the amplitude of 
the wave causes a strong expansion of the fluid at the trough of the wavy wall, leading 
to development of adverse pressure gradients and to flow reversal. The developed 
eddies occupy almost the entire space of the sinusoidal corrugations, leaving only a 
narrow gap for longitudinal fluid transport. As the wave amplitude becomes very 
close to the channel width the channel reduces into a series of independent cells, and 
the flow within each cell is essentially flow in a cavity driven by a moving lid (Pan 
& Acrivos 1967). The structure of the flow may be better visualized by considering 
the velocity profiles along the centre line z = 0 (figure 4a). We observe an almost 
linear profile for small amplitudes, and a parabolic profile for large amplitudes, with 
significnt regions of recirculating flow. 

The above calculations demonstrate the onset of reversed-flow regions, when the 
wave amplitude exceeds a critical value. Flow reversal is indicated by a change in 
sign of the vorticity or the shear stress along the wavy wall. The distribution of shear 
stress along the wavy wall for the three flows discussed above is presented in 
figure 5(a) .  As the wave amplitude is increased, the shear stress at the trough 
decreases rapidly, and touches the zero axis when a/A = 0.030. This defines the 
critical wave amplitude for flow reversal. 

The magnitude of the wall shear stress is important in applications involving 
molecular-convective processes at  high Prandtl or Schmidt numbers (Higdon 1985). 
The pronounced maximum at the crest of the wavy wall indicates increased local 
transport, which may be responsible for a number of effects. For instance, a dissolving 
wavy wall will tend to level out under the high shear rate at the crests. Similarly, 
a chemical reaction between the wall material and the fluid, with deposition of 
products, will cause a fast increase in the wall amplitude and possible clogging of the 
channel. 

It is interesting to consider in some detail the structure of the developed viscous 
eddies. We saw that the size of these eddies is a function of wave amplitude. To 
illustrate this clearly, we consider the eddy height, h, defined as the vertical distance 
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FIGURE 3. Streamline patterns for Couette flow in channels of (a) width w/A = 0.100, and wave 
amplitude a/A = 0.025,0.050,0.090; (b)  w/A = 0.500, and a/A = 0.100,0.200,0.300,0.400; (c) 
w/A = 1.O00, and a/A = 0.200,0.500,0.800; (d )  w/A = 2.000, and a/A = 0.200. 
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FIQORE 4. Velocity profile along the vertical at x = 0, for Couette flow in a channel of (a)  width 
w/h  = 0.100 and wave amplitude (i) a /h  = 0.025, (ii) a /h  = 0.050, (iii) a/h = 0.090; (b)  
w /h  = 0.500, and (i) a /h  = 0.100, (ii) a/h = 0.200, (iii) a/A = 0.300, (iv) a/h = 0.400. 
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FIQWRE 5. Shear stress distribution along the wavy wall for Couette flow in a channel of (a) width 
w/A = 0.100 and wave amplitude (i) u/A = 0.025, (ii) a / A  = 0.050, (iii) a/A = 0.090; ( b )  
w/A = 0.500, and (i)  a /A = 0.100, (ii) a/A = 0.200, (iii) a /A = 0.300, (iv) a /A = 0.400. 
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FIGURE 6. Eddy size at trough aa a function of wave amplitude, for Couette flow in a channel 
of (i) w/A = 0.100, (ii) w / h  = 0.500 

between the dividing streamline enclosing these eddies and the wavy wall at x = 0. 
In  figure 6, we plot the reduced eddy height h/2a as a function of wave amplitude 
a/w.  This is equal to zero for non-reversing flow, a/w < 0.301, but then, it increases 
rapidly, reaches a maximum, and finally, as a/w+ 1, it tends to unity. The maximum 
height, h/2a, is greater than one, indicating that eddies may protrude above the crests 
of the wavy wall. In  contrast, the strength of the eddies, expressd by the x-velocity 
on the dividing streamline at z = 0, increases in a monotonic, smooth fashion. These 
results indicate that near the critical conditions for eddy formation, the flow is very 
sensitive to small changes in the boundary geometry. As a consequence, the 
fabrication of channels should be monitored very accurately to avoid large regions 
of recirculating fluid. 

Proceeding to wider channels, we concentrate on the case w/A = 0.500 (figure 3b). 
As previously, for small wave amplitudes, the streamlines follow the curvature of the 
sinusoidal w4ll, whereas for larger amplitudes flow reversal occurs. In  the present 
case, as the wave amplitude becomes close to the channel width, secondary eddies 
develop at the trough of the corrugations. The velocity profile at x = 0 for each of 
the above patterns is presented in figure 4b. We note the weak fluid motion at the 
trough of the corrugations for large wave amplitudes. The shear stress distribution 
along the wavy wall is shown in figure 5b.  As in the narrow channel case, the shear 
stress reaches a maximum at the wave crests and drops to very low values along the 
rest of the wavy wall. The curve for all\ =0.400 crosses the zero axis twice, 
indicating the presence of secondary eddies. The height of the primary eddies shows 
behaviour similar to that for narrow channels (figure 6). 

Onset of secondary eddies inside deep corrugations is predicted by a number of 
previous studies (Higdon 1985). In  particular, Moffatt (1964) predicted the develop- 
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FIGURE 7. Critical wave amplitude for flow separation as a function of channel width for (a) Couette 
and (b) Poiseuille flow. The straight solid line defines the physical boundary, a < w. In (a) dashed 
line shows predictions of first-order perturbation theory for small wlA; the dotted line shows 
predictions of second-order perturbation theory for small a/A; circles show experimental results 
by Munson et d. (1986). In (b) dotted line shows predictions of first-order perturbation theory for 
small w/A; the dashed line shows predictions of second-order perturbation theory for small alh. 
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FIGURE 8. Drag force on the plane wall as a function of wave amplitude for Couette flow in a channel 
of (i) 0, w/h  = 0.100, (ii) 0, w/h = 0.500. The dashed line shows predictions of first-order 
perturbation theory for small wlh, and dotted lines predictions of second-order perturbation 
theory for small alw. 

ment of an infinite sequence of self-similar eddies at the corner between two 
stationary solid planes, for sufficiently small angles of inclination. It is of interest to 
examine whether the two eddies shown in the lower frame of figure 3(b )  may be 
described by Moffatt’s similarity solution. For this purpose, we evaluate their 
strength ratio equal to 922, and calculate the angle of inclination corresponding to this 
value according to Moffatt. This is equal to in, very close to  the angle formed by the 
tangents to the wavy wall at the lower points of separation. This demoristrates that 
the flow inside the corrugations tends to attain a self-similar state, even at moderate 
wave amplitudes. Thus, onset of eddies may be understood in terms of Moffatt’s local 
analysis. 

To show the behaviour for wider channels, we present streamline patterns for 
w / h  = 1.OOO and 2.000 (figure 3c, d ) .  The first demonstrates the onset of a series of 
alternating eddies for very deep corrugations in agreement with Moffatt (1964). The 
second is characteristic of simple shear flow over a wavy wall, recovered from our 
calculations for large w/a. 

We saw that for every channel width w/h there is a critical wall amplitude, (a/&, 
for flow reversal. In  figure 7(a), we plot (alh),, as a function of w/h, along with 
previous experimental results (Munson, Rangwella & Mann 1985)’ predictions of 
second-order perturbation theory for small amplitudes a /w (Appendix), and predic- 
tions of first-order perturbation theory for small channel widths w / h  (Hasegawa & 
Izuchi 1984). We observe a good agreement between the numerical and experimental 
predictions; the small differences are attributed to the cylindrical geometry used by 
the above authors. Perturbation expansions fail to predict flow reversal with 
reasonable accuracy, except for very narrow channels, and therefore, they are of 

17 RLY 180 
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FIGURE 9. Flow rate as a function of wave amplitude for Couette flow in a channel of (i) 0, 
w/A = 0.100, (ii) 0, w/A = 0.500. The dashed line shows predictions of first-order perturbation 
theory for small w/A, and dotted lines predictions of second-order perturbation theory for small 
a fw.  

limited practical interest. At large amplitudes, the incipient flow-reversal curve tends 
to an asymptotic value, characteristic of simple shear flow over a sinusoidal wall, 
Looking at figure 7 (a )  from a different perspective, we consider the wave amplitude 
a/A fixed, and vary the channel width w/A. This indicates that eddies may be 
produced for any wave amplitude by sufficiently decreasing the channel width. 
Narrower channels cause stronger adverse pressure gradients, responsible for flow 
reversal. 

Concluding this section, we would like to discuss the effect of the channel geometry 
on certain bulk properties of the flow, namely the drag force on the moving plane 
and the flow rate. The first is important in lubrication processes, whereas the second 
is important in coating or pumping operations. These are presented in figures 8 and 
9, along with predictions of perturbation theories. Considering first the drag force, 
we note the parabolic increase for small a/v and the singular behaviour as alw tends 
to unity. Perturbation analysis predicts that this singularity is of the order 
w/(w-ap, as compared with A/w for zero wave amplitude (Hasegawa & Izuchi 1984). 
Thus, measuring the drag force may provide a potential method for estimating wall 
roughness. It is interesting to note that the drag force is approximately doubled when 
the wave amplitude becomes equal to half the channel width. Figure 9 shows that 
the flow rate decreases at  a parabolic rate for small amplitudes, and at  an almost 
linear rate for large amplitudes. It vanishes when the gap between the two walls 
becomes zero. The onset of eddies does not affect the drag force or the flow rate in 
any apparent fashion. 
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FIQURE 10. Streamline patterns for Poiseuille flow in a channel of (a)  width w/h = 0.600 and wave 
amplitude a /h  = 0.300; (b)  w/h = 1.OOO and a/A = 0.500; (c) w / h  = 2.000 and a/A = 0.200. 

4.2. Pressure-driven $ow 
In this section we consider flow driven by an imposed mean pressure gradient 
G = -dP/dx. We discuss our results with respect to those for shear-ddven flow, 
indicating the differences between the two configurations. First, we not;i: that for very 
wide channels, the structure of the flow in the vicinity of the wavy wall is independent 
of the type of flow. It may be substantially different for narrow channels, reflecting 
variations in the driving mechanism. 

Our calculations show that in a narrow channel w / h  = 0.100, the streamlines adjust 
to the curvature of the wavy wall for any wave amplitude. This constitutes a 
fundamental difference from the shear-driven case for which the flow reverses when 
a/h  = 0.030. Physically, in the pressure-driven case, the imposed mean pressure 
gradient is able to defeat any developing local adverse pressure gradients. 

Proceeding to wider channels, we consider a channel with w / h  = 0.500 and 
a /A  = 0.300, figure lo@). A comparison with figure 3 ( b )  (third frame) shows that 
in pressure-driven flow, the fluid is able to penetrate much deeper into the sinusoidal 
corrugations, causing a reduction in eddy size. Calculations for larger wave ampli- 
tudes show that the developing eddies never fill up the entire channel ; there is always 
a substantial region of non-reversing flow attached to the plane wall. In the limit as 

17-2 
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FIGURE 1 1 .  Velocity profile along the vertical at x = 0, for Poiseuille flow in a channel of 
w/A = 0.500, and (i) a /A = 0.100, (ii) a/h = 0.200, (iii) a /A = 0.300, (iv) a/h  = 0.400. 

a + w, the reduced eddy size h/(2a)  tends to 0.25, as opposed to unity for shear driven 
flow. 

The above results demonstrate that the structure of the flow may be critically 
affected by the mechanism driving the flow. Velocity profiles at x = 0 for pressure- 
driven flow are presented in figure 11, and may be compared with those for 
shear-driven flow, figure4(b). We notice the rapid decrease of the velocity with 
increasing wave amplitude. This is a result of our non-dimensionalization (with 
respect to the mean pressure gradient), and is attributed to the rapid increase in wall 
drag force, and therefore in flow rate, with increasing the wave amplitude. The 
strength of the eddies is substantially smaller than that for shear-driven flow, owing 
to the fact that in the present case, the eddies reside more deeply into the 
corrugations. Considering the shear stress distribution (figure 12), we note the 
pronounced maximum at the wave crests, familiar from shear-driven flow. However, 
now we observe a smoother decrease around the maximum, suggesting a milder effect 
on molecular-convective processes. The shear stress at the wave crest is a function 
of wave amplitude, reaching an extreme value approximately when a / h  = 0.200. This 
is expected, since for a specified pressure gradient, increasing a/h,  causes a local 
acceleration of the flow above the crests, simply for mass conservation, but also a 
reduction in the flow rate; the combined effect yields a maximum. Interpreting this 
behaviour, we conclude that for a specified pressure drop, there is an optimum wave 
amplitude for fastest convective transport. 

Flow reversal in pressure driven flow may be understood by considering the 
individual mechanisms dominating different flow regions. For large wave amplitudes, 
the flow within the corrugations is dominated by the similarity solution of Moffatt 
(1964), describing an infinite sequence of eddies. On the other hand, as a/w+ 1, the 
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FIGURE 12. Shear stress distribution along the wavy wall for Poiseuille flow in a channel of 
w/A = 0.50, and (i) a/h = 0.100, (ii) a/A = 0.200, (iii) a/h = 0.300, (iv) a/A = 0.400. 

flow in the vicinity of the wave crests is dominated by the Jeffery-Hamel similarity 
solution (Fraenkell962). This describes flow in a wedge confined by two planes, with 
a point source or point sink at  the apex. In  the limit of zero Reynolds number, and 
when the wedge angle 2 a  is less than 1.43x, the velocity field in polar coordinates 
is given by the similarity solution 

Q 
T sin 2a - 2 a  cos 2a 

sin2 a - sin2 8 
u, = 2 -  

u(j = 0, 

where Q is the strength of the point source or point sink, and 9 = 0 along the axis 
of the wedge. Note that the radial velocity decreases uniformly as the inverse of the 
distance from the origin, but flow reversal does not occur. This solution may be 
extended to describe flow in corners with curved walls, provided a local coordinate 
system is used (Langlois 1964, p. 177). For a corner formed by a plane and a sinusoidal 
wall, the centre of the local coordinate system is located at the intersection between 
the plane wall and the tangent to the wavy wall. Flow reversal along the wavy wall 
is determined by the relative strength of the Jeffery-Hamel and the Moffatt similarity 
solution. When the first dominates, for small wave amplitudes, the streamlines bend 
to follow the curvature of the wavy wall ; when the second dominates, for large wave 
amplitudes, flow reversal occurs. 

Considering wide channels, we plot the streamline patterns for w/h = 1.OOO 
and 2.000 (figure l o b ,  c ) ,  and compare them to the corresponding ones for shear 
driven flow presented in figures 3(c) (middle panel) and 3(d). The comparison for 
w/h = 1 .000 clearly illustrates the deeper penetration of the fluid into the sinusoidal 
corrugations for pressure-driven flow. On the other hand, the comparison for 
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w/A = 2.000 indicates a similarity in the flow structure for very wide channels. This 
is expected, as when w/a becomes large, the curvature of the parabolic profile in the 
vicinity of the wavy wall becomes less important, and the parabolic flow is locally 
approximated as a simple shear flow. 

The incipient flow reversal curve for pressure-driven flow is shown in figure 7 (b), 
along with predictions of perturbation analyses. Note the insufficiency of second- 
order perturbation expansion for small a/w (Appendix) to predict flow reversal. 
First-order perturbation expansion for small w/A  (Hasegawa & Izuchi 1983) is 
accurate only in a qualitative sense. At large channel widths, the separation curve 
tends to an asymptotic value which is identical with that for shear-driven flow, and 
is characteristic of simple shear flow over a sinusoidal wall. Again, an interesting 
interpretation arises by considering the wave amplitude constant and varying the 
channel width. This shows that at small amplitudes, flow reversal does not occur for 
any channel widths. Next, there is a range of moderate amplitudes where the flow 
reverses only within wide channels; the eddies produced may be suppressed by 
sufficiently decreasing the channel width. Finally, flow reversal always occurs for 
large wave amplitudes, independently of the channel width. This behaviour is 
fundamentally different from that for shear-driven flow, for which eddies may be 
produced for any wave amplitude by sufficiently decreasing the channel width. 

The support of Eastman Kodak company is acknowledged. 

Appendix 
In this Appendix we outline a perturbation analysis of shear- and pressure-driven 

flow in a channel constricted by a plane wall a t  y = w, and a sinusoidal wall at 
y = --a cos (kz), valid for small wave amplitudes E = a/w. First, following Wang 
(197&), we introduce the stream function $, and expand 

JL = $ o + E $ ’ 1 + € 2 $ 2 + . . .  . 
vw 

The zeroth-order term is equal to $o = -?jP for Couette, and $o = 3 2  Y-3) y2 for 
Poiseuille flow, where Y = y/w. In the first case V is the velocity of the plane wall; 
in the second case V is defined with respect to the mean pressure gradient 
G = -dP/dx, as V = Gw2/2p. In the limit of creeping motion, $ satisfies the 
biharmonic equation and thus 

v4+-( = 0 (i = 0,1,2, ...). (A 2) 

The boundary conditions satisfied by the stream function are the no-slip and 
no-penetration condition on the wavy and the plane wall, 

(A 3) 
@ = - = O  w at Y=-~cos (kz ) ,  

aY 
@ = O  a t Y = l ,  

and 

or 

-- ” = v at Y = 1 for Couette flow, 
aY 

- = 0 
aY 

a t  Y = 1 for Poiseuille flow. 
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Substituting (A 1) into these equations and collecting first-order terms, we may solve 
for the first-order correction. Details are given by Wang (1978) ; the result is identical 
for Couette and Poiseuille flow, 

1 
R = - c o ~ ( k ~ ) - [ - 2 q ( e Q ~ - e ~ ~ ~ ) + ( e - ~ Q + 2 q - l )  YeQY+(e2Q-2q-1) Ye-QY], 

(A 4) 

2-4q2, where &' = e2Q + e-2Q - 
and q = kw. This is a purely periodic term in phase with the wave and thus, does not 
affect the flow rate or the mean drag force on the solid surfaces. Working in a similar 
fashion, we may evaluate the second-order correction (see also Munson et al. 1985), 

+I.a = - ~ + G Y - ~ Y Z + ( A e 2 Q Y + B e - 2 Q Y + C Y e 2 Q Y + D Y e - 2 Q Y )  sin(2kz), (A5) 

where 
(8q2-ee-4Q+ 1 +4q- 16Fq) 

4E 
A =  9 

B = + - A ,  

2q( -4q- 1 + e-4Q) + 4F( - 1 + 4q + e-4Q) 
4E 

C =  9 

2q( - 4 q  + 1 - e4*) + 4F( - 1 - 4q + e4Q) 
4E 

D =  9 

with E = 16q2-ee-44-e4Q+2, 

F = - q(4q + e-29 - e2*) 
R 9 

and G = F, for Couette flow, 

G = F-+,  for Poiseuille flow. 

The non-periodic part of (A 5) yields an order-c2 contribution to the drag force and 
the flow rate. The wall shear stress may be evaluated in a straightforward fashion, 
by differentiating (A 1). 
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